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Abstract. The pressure of the hard-sphere fluid was measured from near the equilibrium
freezing density to the maximum density where the properties of the metastable fluid can be
measured without it freezing or becoming glassy. Above the freezing density the measured
pressures increase faster than the predictions of Padé approximants based on the known virial
coefficients, which raises the possibility of a high-order singularity at the freezing density.
However, a model fluid that has exactly the same virial coefficients as hard spheres, up toB16,
is shown to have a higher pressure than the hard-sphere fluid well below the freezing density of
either fluid and this casts doubt on the reliability of Padé approximants.

1. Introduction

From an experimental point of view there is no sign that metastable phases are not continuous
extensions of stable phases, yet careful theoretical analyses [1–4] predict a, very weak,
essential singularity at the point where a stable phase becomes metastable. A simplistic
explanation of the singularity is that ‘droplets’ of the less stable phase can form and decay
freely within a stable phase but ‘droplets’ of the more stable phase must be excluded from
the metastable phase, because they would grow and destroy it. The partition function for
the stable phase therefore counts states that contain the ‘droplets’ but some constraint must
be applied to exclude them from the partition function of the metastable phase. For a recent
review of this topic and references the reader is referred to Debenedetti’s book [5].

More virial coefficients are known [6–9] for hard spheres than for other fluids. The
density range over which the virial expansion is valid has not been established but the
general arguments suggesting an essential singularity at the freezing density of a fluid [1–5]
imply that the virial expansion is not valid above the equilibrium freezing density.

The thermodynamic properties of the hard-sphere fluid [10–12] crystals [13–17] and
glasses [10, 12, 18–20] have been studied extensively by computer simulation. The equation
of state near the freezing density is shown in figure 1. To examine the possibility that the
virial expansion may not extrapolate correctly through the equilibrium freezing density,
the pressure of the metastable fluid was measured precisely and compared with pressures
predicted by Pad́e approximants based on the known virial coefficients.

2. Methods and results

Fluids of N = 500 toN = 4000 spheres, of diameterσ , were simulated in a cubic cell
of volumeV with periodic boundaries using Alder and Wainwright’s [10] algorithm and
some efficiencies described by Lubachevsky and Stillinger [21]. The starting configuration,
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Figure 1. The pressure,PV0/NkT = zPV/NkT , of hard spheres versus densityz =
(N/V )σ 3/

√
2 near the transition region [13–15]. For the face-centred cubic crystalPV/NkT =

3/(1− z) − 0.5921(z − 0.7072)/(z − 0.601) [17] above the melting density and this equation
extrapolates to a spinodal instability atz = 0.64. Equation (4) of this paper is used for the fluid.
The dotted line shows the extrapolated pressure of annealed and reproducible glasses [18–20]
PV/NkT = 2.67/(1−z/0.8754). The fluid–crystal tie line is atPV0/NkT = 8.17±0.08, where
the density of the fluid iszf = 0.663±0.002 and the density of the crystal iszc = 0.733±0.002.

a face centred cubic crystal, was melted at low density to obtain an equilibrated fluid. The
fluid was compressed with the method of Lubachevsky and Stillinger, in which the sphere
diameter increases linearly with time during an otherwise normal molecular dynamics run.
After compressing to densityz = (N/V )σ 3/

√
2 the fluid was usually equilibrated for one

million collisions (table 1) before starting a run in which the pressure was measured. The
pressures listed in table 1 are about an order of magnitude more precise than Woodcock’s
values [12] up toz = 0.73, where it was possible to simulate the fluid for 108 collisions
without freezing. They agree with Woodcock’s values [12] up toz = 0.74. At higher
densities Woodcock’s pressures are lower, suggesting that his fluid and glass were partly
frozen. Forz > 0.73, less precise results, averaged over several short runs, are reported to
z = 0.77. The properties of hard-sphere glasses are reported elsewhere [18, 19].

3. Freezing

Fluids ofN = 1372 spheres were simulated for 108 collisions without freezing, up to the
densityz = 0.73. At higher density they always froze within a few million collisions and
the pressure was averaged over several short runs, as shown in figure 2. For the short runs
the fluid was simulated for half a million collisions atz = 0.5 and then compressed to
z = 0.74, 0.75, 0.76 or 0.77, where the pressure was followed with time for 2 to 5 million
collisions. The estimated equilibrium pressure of the fluid, shown by the horizontal lines
in figure 2, is an average over the last 1 to 2 million collisions of three or more runs in
which the pressure remained stable and in which the average pressures agreed to within 0.1
in PV/NkT . At z = 0.74 the root-mean-square displacement of the spheres is near one
diameter in a run of 2 million collisions, but whenz = 0.76 it is only 0.5σ and the system
is glassy on the simulation time scale.

The downward pressure drift immediately after the compression, shown in figure 2, is
due to relaxation of the fluid, or glass, and the pressure drops at longer times are due to
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Table 1. The pressurePV/NkT of the hard-sphere fluid.N is the number of spheres,Neq is
the equilibration period (after compressing an equilibrated configuration from a lower density)
in millions of collisions,Nc is the run length in millions of collisions. The density relative to
that of the close packed crystal isz = (N/V )σ 3/

√
2. Whenz 6 0.735 the estimated error in

the last two digits ofPV/NkT , shown in brackets, is 2
√
δ2/
√
Ns whereδ2 is the rms variation

in values ofPV/NkT calculated inNs = 20 sub-intervals of the run. At higher densities the
error estimates are based on the agreement between several independent runs.

N Neq Nc z PV/NkT

1372 5 40 0.625 10.203(03)
1372 2 100 0.650 11.498(04)
1372 1 100 0.680 13.341(04)
1372 1 100 0.690 14.039(05)
1372 5 100 0.700 14.787(04)
4000 1 20 0.700 14.786(11)
1372 1 100 0.705 15.187(08)
1372 1 50 0.710 15.587(10)
1372 10 100 0.715 16.020(10)
1372 1 100 0.720 16.457(08)
4000 1 20 0.720 16.458(26)
1372 1 100 0.725 16.904(11)
1372 1 100 0.730 17.351(19)
4000 1 50 0.730 17.370(21)
1372 1 10 0.735 17.905(40)
1372 0.5 14× 1 0.740 18.42(05)
1372 0.5 3× 2 0.750 19.55(10)
1372 1 3× 2 0.760 21.05(10)
1372 1 3× 2 0.770 22.40(15)
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Figure 2. Variation of PV/NkT with time, measured in millions of collisions, for the hard-
sphere fluid. Each run was started by compressing a different fluid configuration fromz = 0.5
to the density shown. Pressures shown are averaged over intervals of 105 collisions. Many
more runs of different length are not shown. The initial downward drift is due to relaxation
after the compression and at longer times it is due to freezing. Horizontal lines show estimated
fluid pressures, averaged over selected runs in which the pressure did not drift during the last 2
million collisions and which agreed with each other to within±0.1 in PV/NkT .

freezing. The time scales for these two processes are about the same at the densities shown
in figure 2 so the properties of the metastable state may not be not well defined [3].
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Smaller systems freeze quicker than larger ones, which means that the periodic
boundaries in a small system encourage crystallization. If freezing depends on random
and local nucleation events then the probabilityPf (N, t) that a supercooled fluid ofN
spheres will freeze in a timet , should increase in proportion to the simulation time and to
the system size, so thatPf (N, t) is proportional toNt . Figure 3 shows the density where
fluids ofN spheres freeze in runs ofNc = 250 000 and 10 million collisions. The collision
rate per sphere is independent of system size, so the simulation timet scales asNc/N , and
Nt is constant whenNc is fixed. Thus, the lines in figure 3 would be horizontal ifPf (N, t)
varied asNt . The negative slopes show that the probability of freezing in a given time
decreases as the system size increases, which is consistent with the conclusions of more
detailed studies [22, 23] of freezing in Lennard–Jones fluids.
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Figure 3. The lowest density where the hard-sphere fluid usually freezes in runs of 0.25 million
and 10 million collisions, plotted against 1000/N whereN is the number of spheres. The lines
would be horizontal if freezing occurred by random nucleation. The negative slopes show that
small systems freeze at lower densities than larger ones, indicating that the periodic boundaries
influence crystallization.

Pressures reported by Rintoul and Torquato [24] nearz = 0.756 and 0.77 are 1.9%
higher than the present values. They evidently fitted pressures measured during the initial
short-time relaxation to an exponential decay with time to estimate the equilibrium value.
They state that, at higher densities, larger systems freeze faster than smaller ones, which is
the opposite of the trend shown in figure 3.

4. Equation of state

The known viral coefficients [6–9],Bk, in the virial expansion [25, 26]

PV/NkT = 1+
∑
k=2

Bkρ
k−1 (1)

whereρ = N/V , are listed in table 2.
Many analytic equations of state have been proposed for the hard-sphere fluid [27]. The

precise pressure measurements at low density by Erpenbeck and Wood’s [11] eliminate many
of the older equations from further consideration and Janse van Rensburg’s [9] calculation
of B8 eliminates most others.
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Table 2. Values of the virial coefficientsBk from Janse van Rensburg [9] and the constantsak and
ck in theP(3, 2) equation of state, equation (2).B2 = (2/3)πσ 3. The valueB6/B

5
2 = 0.038 82

was chosen to best fit the measured pressures, as described in the text. Deviations are shown in
figures 4 and 5. TheP(3, 2) equation implies thatB7/B

6
2 = 0.012 97 andB8/B

7
2 = 0.004 185.

k Bk/B
k−1
2 ak ck

1 1.0 −0.548 986
2 1 0.076 014 0.075 647
3 5/8 0.019 480
4 0.286 9495
5 0.110 252(1)
6 0.038 808(55)
7 0.013 071(70)
8 0.004 32(10)

The pressure calculated from equation (1), truncated afterB8, is a few per cent too
low near the freezing density. A popular [9, 11, 14] method of estimating and summing the
higher terms is to express the equation of state as a Padé approximant

PV/NkT = P(m, n) = 1+ (x + a2x
2+ · · · + amxm)/(1+ c1x + · · · + cnxn) (2)

in which x = B2ρ and up to seven of the constantsak andck are determined by the known
virial coefficientsB2 to B8 listed in table 2. TheP(m, n) reported by Janse van Rensburg
[9] use the virial coefficients without any allowance for their uncertainties. The resulting
equations of state (equations (3.5) to (3.8) of [9]) are not in good agreement with each other
and they do not predict the measured pressures accurately at densitiesz > 0.5. To optimize
the Pad́e equations of state,B6, B7 andB8 were each varied, over the range±1.5Ek, where
Ek is the numerical uncertainty inBk, and the Pad́e coefficients were obtained from the
simultaneous equations that relate them to theBk. The resulting equations of state were then
compared with the simulation data. In order to weight the measured pressures according to
their precision, the deviation,δ = (PV/NkT−P(m, n))/EP , whereEP is the uncertainty in
PV/NkT , was calculated at each density. Minimizing the sum6δ2, for densitiesz 6 0.68,
determines the best-fit parameters inP(m, n). The parameters forP(3, 2) are listed in
table 2. Figure 4 shows thatP(3, 2) reproduces the low-density data of Erpenbeck and
Wood to within twice the very small experimental errors that they report, and it fits the
present results, to within the errors listed in table 1, up toz = 0.68, which is just above the
equilibrium freezing density,zf = 0.663. Quantitatively very similar results were obtained
with P(4, 2), P(3, 3) andP(5, 2) but the quality of the fit is not significantly improved over
that ofP(3, 2). TheseP(m, n) are all consistent with the knownBk to within ±1.5Ek, and
they all predict thatB9/B

8
2 = 0.001 32± 0.000 01 andB10/B

9
2 = 0.000 407± 0.000 004.

Furthermore, extrapolation of all the fittedP(m, n) to densities up toz = 0.76 yields the
same pressure, to within±0.03 in PV/NkT (whereas equations (3.5) to (3.8) of [9] differ
by 1 in PV/NkT at z = 0.76).

A common feature of the fitted equations is that they reproduce the known virial
coefficients, and the measured pressures up to the freezing density, but extrapolation to
higher density yields pressures that are lower than the measured values, as shown in
figure 4. Attempts to choose the Padé parameters to fit the higher-density data resulted
in significant systematic deviations from the measured pressures and inconsistencies with
the virial coefficients.
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Figure 4. Percentage deviation of measured values ofPV/NkT from theP(3, 2) approximant
(equation (2)) versus density. Pressures at densitiesz 6 0.625 are from Erpenbeck and Wood
[11] and atz > 0.625 they are from table 1. The coefficients ofP(3, 2) are listed in table 2.
Above the freezing density,zf = 0.663, the deviations are systematic (figure 5).
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Figure 5. Cube root of the deviation of the measured values ofPV/NkT (table 1) from the
Pad́e approximantP(3, 2) at densitiesz above the freezing densityzf = 0.663. Deviations from
P(4, 2), P(3, 3), P(4, 3) andP(5, 2) are the same to within the errors shown. The solid line
corresponds to equation (3). The dotted line shows the extrapolated pressure of the reproducible
glasses [18–20].

Figure 5 shows that, above the freezing density, [PV/NkT −P(3, 2)]1/3 varies linearly
with density and extrapolates to zero at the freezing density, which means that the deviations
vary as the cube of the distance above the freezing density. The deviations are described
by

D(z) = PV/NkT − P(3, 2) = 400(z− zf )3 (3)

wherezf = 0.663 is the equilibrium freezing density. Figures 4 and 5 show that the equation
of state of the hard-sphere fluid can be expressed as

PV/NkT =
{
P(3, 2) 0< z < zf

P (3, 2)+D(z) zf < z 6 0.75.
(4)

According to equations (3) and (4), the third derivatives of the pressure, or the fourth
derivatives of the free energy, change discontinuously when the stable fluid becomes
metastable.
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A possible interpretation of equation (4) is that the Padé approximants based on the
knownBk do not sum the tail of the series accurately, so that when more virial coefficients
are known the Pad́e approximants will change and they may then account for the high-
density data. Evidence against this possibility is that the differentP(m, n) extrapolate to
z = 0.76 in the same way, and that they predict the sameB9 andB10.

A second interpretation of equation (4) is that the Padé approximants sum the tail of the
viral series accurately, but that the virial expansion is not valid above the freezing density.
This is consistent with the notion that there is an essential singularity at the freezing density.

Section 5 reports an attempt to distinguish between those two possibilities, by simulating
some constrained model fluids, one of which has exactly the same virial coefficients as the
hard-sphere fluid up toB16.

Equation (4) can be integrated analytically to get the entropy, relative to an ideal gas,
from

1igS/Nk = −
∫ z

0
(PV/NkT − 1)d ln{z} (5)

so it is not necessary to develop a separate Padé approximant for the entropy [9, 14] and
all the thermodynamic properties of the fluid can be obtained from equations (2) to (5)
with the parameters in table 2. As a check, the equilibrium melting pressure of the face-
centred cubic crystal [17] was recalculated. The results, given in the legend to figure 1, are
little lower than the values of Hoover and Ree [14] but they agree to within the combined
uncertainties.

Ross and Alder [28] noted that the equilibrium freezing density of fluids coincides with
the lowest density where the crystal survives without melting in simulation studies. Hard-
sphere crystals can be simulated for a few million collisions atz = 0.67 before melting but
they melt quickly atz = 0.66. It is interesting that the highest density where the fluid can
be simulated without freezing,z = 0.73, is also close to the equilibrium melting density of
the crystal. These ‘rules’ probably stem from the difficulty of fitting coexisting phases in a
small cell with periodic boundaries.

5. Constrained simulations

Constraints are commonly used in simulations to stabilize metastable states and facilitate
entropy measurements [14, 15, 20]. Cell model constraints can prevent hard-sphere crystals
from melting [14] and constraining the size of voids can prevent superheated Lennard–Jones
fluids from boiling [5, 29, 30]. The favoured method of avoiding freezing in simulations has
been to use mixtures [31], rather than a constraint, and little is known about the kind of
constraints that might prevent freezing or the effect that they have on the properties of the
constrained fluid. This section investigates the effect of a very simple constraint, designed
to inhibit freezing of the hard-sphere fluid.

In the crystal, each sphere has 12 close neighbours so a constraint that prevents a sphere
from having 12 close neighbours in the fluid may inhibit freezing. The neighbours of a
sphere are defined as those whose centres are within a distanceλσ , whereλ can be varied
to optimize the constraint. Similarly, constraints that limit the number of second or third
neighbours of a sphere may inhibit freezing. These constrained systems are easy to simulate
using a saturated square well model [32] SSW(Nv, λ, ε/kT = 0) with valencyNv, well
diameterλσ and well depthε = 0. The simulations proceed as for hard spheres except
that lists are kept of the neighbours of each sphere and, when a sphere already hasNv
neighbours, other spheres bounce off it, as though they are both hard spheres of diameter
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of λσ . The constraint has no effect ifNv is larger than the number of spheres that can be
packed withinλσ of a sphere.

One reason for choosing this kind of constraint is that it has no effect on clusters of up
to Nv +1 spheres. The virial coefficientsBk can be expressed in terms of the configuration
integrals for j = 1, 2, . . . , k spheres, without assuming pairwise additivity [26], which
means that theBk, for k 6 Nv + 1, are exactly the same for the SSW(Nv, λ, ε/kT = 0)
fluid and for the hard-sphere fluid. If the two fluids have different pressures then it follows
that any method of summing the virial series, based on the exactBk, k 6 Nv + 1, does
not sum the virial series accurately above the density where the pressures differ, or that the
virial expansion is not valid above that density.

The excess pressure of some SSW models, relative to the hard-sphere fluid, represented
by P(3, 2), is shown in figure 6. In general the severity of the constraint increases, and
the pressure increases, ifλ is increased orNv is decreased. The models shown in figure 6
all showed signs of freezing to defective crystals when simulated nearz = 0.74 for several
million collisions, so the constraints studied are not effective in preventing freezing.
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Figure 6. Cube root of the deviation of the measured values ofPV/NkT , for some
SSW(Nv, λ, ε/kT = 0) fluids, from the Pad́e approximantP(3, 2) at densityz. P(3, 2)
representsPV/NkT for hard spheres whenz < 0.68. The lines correspond toPV/NkT =
P(3, 2) + C(z − z1)

3 with C = 400 andz1 = 0.575 forNv = 11, λ = 1.25, C = 1000 and
z1 = 0.55 forNv = 10, λ = 1.25; C = 108 andz1 = 0.40 forNv = 15, λ = 1.6.

The constrained models have significantly higher pressures than the hard-sphere fluid
well below the freezing density of either fluid. For instance, the pressure of the SSW(Nv =
15, λ = 1.6, ε/kT = 0) fluid is higher than that of hard spheres whenz > 0.45 and it is
most unlikely that any crystalline phase is more stable than the fluid at such low density,
wherePV/NkT < 5. This shows that even if 16 virial coefficients are known exactly, a
Pad́e, or any other approximant based on the 16 virial coefficients, cannot be relied on to
predict the equation of state accurately up to the freezing density.

6. Conclusion

The evidence for a singularity at the hard-sphere fluid freezing density, suggested by
figures 4 and 5, is inconclusive because it relies on the assumption that the Padé
approximants accurately represent the tail of the virial series. When hard spheres are
considered in isolation, as in section 4, that assumption seems plausible and it is supported
by the good agreement between several differentP(m, n) that agree with the known virial
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coefficients and with the pressure measurements, up to the freezing density. However, a
saturated square well fluid that has the same virial coefficients as the hard-sphere fluid,
up to B16, has a higher pressure than the hard-sphere fluid whenz > 0.45. This shows
that either the virial expansion is not applicable whenz > 0.45 or that knowledge of the
coefficients beyondB16 is required to predict the pressure reliably. In either case, Padé
approximants based on the virial coefficients up toB16 cannot be relied on to predict the
pressure accurately.
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